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Abstract 
In this paper, a discrete Implicit Linear Multistep Method (LMM) of Direct Solution of IVP second order 
ordinary differential equation with periodic solution was developed at step length k = 3, using 
trigonometric function as a basis function. The computational burden and computer time wastage 
involved in the usual reduction of second order problem into system of first order equations are avoided 
by this method. The development of the method adopts Taylor series expansion techniques and Boundary 
Locus stability test method. The developed method was found to be accurate, consistent, zero stable, P-
stable and convergent. The method was used to solve sample problem on second order ordinary 
differential equation with periodic solutions and results are quite suitable when compared with other 
existing methods. 
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1.0.0         INTRODUCTION 
Any function of the form 
y’’ = f(t, y)  a ≤ t ≤ b, y(a) = y0, y′(a) = α      (1.0.1) 
where f(t + T, y) = f(t, y) where T is the period. 
is called initial value problems of second order ordinary differential equation with periodic solution. 
Solutions to the IVP of the type (1.0.1) are highly oscillatory in nature and thus severely restrict the 
conventional linear multistep method of such system which often occurs in mechanical system without 
dissipation, satellite tracking and celestial mechanics [[7], [9], [3]] 
One of the conditions that such equation (1.0.1) must be satisfied in order to ensure the existence and 
uniqueness of solution is contained in theorem postulated by [5].  
According to [7], [8], [12], and [10] ; the commonest method of solving a second order ordinary 
differential equation of the form (1.0.1) is by reduction of the problem into first ordinary differential 
equation. 
However, a more serious drawback to such technique arises when the given system of equations to be 
solved cannot be solved explicitly for the derivatives of the highest order and, thereby; become 
inefficient, uneconomical for a general purpose application. 
In this work, a discrete Linear Multistep Method of the form 
 

 𝑦𝑛+𝑘  = �𝑎𝑗𝑦𝑛+𝑗 + 
𝑘−1

𝑗=0

(ℎ)2�𝛽𝑗y′′𝑛+𝑗                                                                (1.0.2)
k−1

𝑗=0

 

is developed at step length K = 3 ; for direct solution of second order initial value problems of ordinary 
differential equation of the form (1.0.1) using trigonometric function as a basis function 
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2.0      DERIVATION OF THE METHODS 
 The development of the numerical methods for solution of periodic initial value 
problems of ordinary differential equation of the form  
 y|| = f(t, y)  a ≤ t ≤ b, y(a) = y0, y′(a) = α     2.0.0 
where f(t + T, y) = f(t, y) where T is the period. 
Assuming the theoretical solution of the equation (2.0.0) is of the form  
 y(t) = a cos wt + b sin wt         2.0.1 

At,  t = tn 
yn = y(tn) = a cos wtn + b sin wtn       2.0.2 
y1(tn) = y1

n = a w sin wtn + bw cos wtn      
y11(tn) =  y11

n = - w2 (a cos wtn + b sin wtn)  =  fn    2.0.3 
 fn = - w2yn          2.0.4 
 tn+k =  tn+ kh where k = 0, 1, 2, 3, 4.and h = tn+1 - tn    2.0.5 
Similarly, 
At t = tn+1 
y(tn+1) = yn+1 = a cos wtn+1 + b sin wtn+1      2.0.6 
y1(tn+1) = y1

n+1 = awsin wtn+1 + bwcos wtn+1     2.0.7 
        y11(tn+1) = y11

n+1 = -w2 (a cos wtn+1 + b sin wtn+1)  
 fn+1 = - w2yn+1         2.0.8 

 At t = tn+2          
y(tn+2) = yn+2 = a cos wtn+2 + b sin wtn+2      2.0.9 
y1(tn+2) = y1

n+2 = w a sin wtn+2 + bw cos wtn+2     2.0.10 
y11(tn+2) = y11

n+2 = -w2 (a cos wtn+2 + b sin wtn+2) = fn+2    2.0.11 
fn+2 = - w2yn+2          2.0.12 
At t = tn+3          
y(t) = y(tn+3) = yn+3 = a cos wtn+3 + b sin wtn+3     2.0.13 
y1(tn+3) = y1(tn+3) = y1

n+3 = w a sin wtn+3 + bw cos wtn+3    2.0.14 
y11(tn+3) = y11(tn+3) = y11

n+3 = w2 (a cos wtn+3+b sin wtn+3) = fn+3  

 2.0.15 
fn+3 = - w2yn+3          2.0.16 
 

 2.1      METHODOLOGY 
Subtracting equation (2.0.9) from equation (2.0.13) to get 
yn+3  - yn+2 =  a(cos wtn+3 – cos wtn+2) + b (sin wtn+3 – sin wtn+2)                           2.1.1 
By adopting trigonometric difference equation method and simplifying to obtain 

yn+3 – yn+2  = - 2 sin 
2

wh ( ) ( )



 +++ htwbhtwa nn 52

2
cos52

2
sin    2.1.2 

 
Subtract equation (2.0.15) from (2.1.2) to obtain;  

yn+3 – 2yn+2  + yn+1 = -4 sin2 
2

wh ( ) ( )[ ]htwbhtwa nn 2sin2cos +++               2.1.3 

Subtract 2. 0.16 from 2.1.3 to obtain: 

yn+3 – 3yn+2 +3yn+1 –yn = -8sin3 







2
wh ( ) ( )



 +++ htwbhtwa nn 32

2
sin32

2
cos            

2.1.4 
Add equation (2.0.3) and (2.0.8) 
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fn+1 + fn = - 2 w2 cos 
2

wh
 �𝑎𝑐𝑜𝑠 𝜔

2
(2𝑡𝑛 + 3ℎ) + 𝑏𝑠𝑖𝑛 𝜔

2
(2𝑡𝑛 + 3ℎ)�                          2.1.5 

 
 Add equations (2.0.15) and (2.0.11) to obtain; 

fn+3 + fn+2 = - 2 w2 cos 
2

wh
 ( ) ( )



 +++ htwbhtwa nn 52

2
sin52

2
cos           2.1.6 

Similarly adding equation 2.1.5 to 2.1.6 and simplify to get  

fn+3 + 2fn+2 + fn+1 = - 4w2 cos2 
2

wh ( ) ( )[ ]htwbhtwa nn 22sin2cos +++          2.1.7 

In the same way; add equation 2.1.7 to equation 2.1.5 and simplify to get  

fn+3 + 3fn+2  +3fn+1 + fn = - 8w2 cos3 
2

wh ( ) ( )



 +++ htwbhtwa nn 32

2
sin32

2
cos          2.1.8 

Divide equation (2.1.4) by equation (2.1.7) to obtain 
3

2
123

123

2
tan1

33
33







=

+++
−+−

+++

+++ wh
wffff

yyyy

nnnn

nnnn             2.1.9 

Using Taylor’s series expansion to simplify equation (2.1.9)  to obtain  
34422

2
123

123 ....
240242

11
33
33









+++=

+++
−+−

+++

+++ hwhw
wffff

yyyy

nnnn

nnnn          2.1..10 

Assuming h is sufficiently small such that wh is also small,  
then (2.1.10) modifies into  

yn+3 – 3yn+2 + 3yn+1 – yn  = 
3

2

2

h
 (fn+3 + 3fn+2 +3fn+1 + fn)          2.1.11 

yn+3 = 3yn+2 - 3yn+1 + yn  + 
8

2h
 (fn+3 + 3fn+2 +3fn+1 + fn)                       2.1.12 

3.0     Definition  
 
Let П (r, h) = ρ(r) – h δ(r)                                   (3.1.0) 
denotes the characteristic polynomial equation of the method where ρ(r) and δ (r) are called first and 
second characteristics polynomials respectively; as explained by [11]. 
In the spirits of [4], [10], [15], [12] [13], [14]; a linear multistep method is said to be consistent if and only if 
it satisfies the following conditions  
( )

( )

( ) ( ) ( )
( ) ( ) ( ) 













=

==

=

≥

∑
=

rriv
rriii

jii

PorderThei
k

j

δρ

ρρ

α

!2
0

0

1

11

1

0       .                            (.3.1.1) 

With the principal root r ≤ 1 
from (3.2.1) the characteristic polynomial equation of the 2-step method (1.2.14) is 

𝑟3 + 3𝑟2 + 3𝑟 + 1 = 1
8

(𝑟3+3𝑟2 + 3𝑟 + 1)                   

where  ρ(r) = 𝜌(𝑟) = 𝑟3 − 3𝑟2 + 3𝑟 − 1 ;𝑎𝑛𝑑 𝛿(𝑟) = 1
8

(𝑟3+3𝑟2 + 3𝑟 + 1)    
     
Simplifying equation (3.2.3),  we have (r – 1)(r – 1)(r-1) = 0,  r = 1, 1,1 
Thus,   ρ(1) = 0 =  ρ/(1),               𝜌′′|1| = 0 = 2! 𝛿|−1| 

 ∑ α𝑗𝑘
𝑗=0 = 1 − 3 + 3− 1 = 0  
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Therefore the method (2.1.12) is consistent, convergent and zero stable.   
 
 
3.2.0 STABILITY PROPERTIES OF THE METHOD 
 
A linear multistep method of the form (1.0.2) is said to be  
(i) Zero stable if no root of the first characteristics polynomial has modulus greater than one that is it 

must be within a unit circle. 
(ii) Absolutely or relatively stable in a region R of the complex plane if for all h  ∈ R; all roots (rs) of 
the stability polynomial π(r, h ) associated with the method satisfy. 
| rs|  <  | ; s = 1, 2, …. K, ∀  |rs | < | r1| 
 S = 2, 3, 4….., k,        [ according to [11], [ 5]]               (3.2.1) 
 
REGION OF ABSOLUTE STABILITY 
 
The method in equation (2.1.12) satisfies the conditions for zero stability since there is no root of its first 
characteristic polynomial ρ(r) that is greater than one since 
 ρ(r)  = r3 – 3r2 + 3r – 1 = 0         3.4.2 
(r – 1)(r – 1)(r – 1) = 0,  r = 1, 1, 1 
To test for region of absolute stability; the following steps can be followed; 

( ) ( )
( )

( )
133
1338

23

23

+++
−+−

==
rrr
rrr

rH
rTrh         3.4.3 

Let  r = ei θ = Cos θ + i sin θ                      3.4.4 
T(r)  =  [32 cos3 θ – 48 cos2 θ – 4] + i [6sinθ cos θ + 3sin θ] 
H(r)  =  [4 cos3 θ + 6 cos2 – 2] + i [6sinθ cos θ + 3sin θ]                             3.4.5 
( ) ( ) ( )θθθ YiXh +=           3.4.6 

( ) ( )( ) ( )
( ) ( )

( ) ( )( )
( ) ( )2223

23

2223

22323

sin3cossin62cos6cos4
2cos53cos28sin3cossin6

sin3cossin62cos6cos4
sin3cossin62cos6cos44cos48cos32

θθθθθ

θθθθθθ

θθθθθ

θθθθθθθθ

++−+

++−+
=

++−+

++−+−−
=

Y

X

 

where X(θ) was evaluated for values of θ ranges between 00 and 1800 and the results ere tabulated below 
Table 2 
Θ 0 30 60 90 120 150 180 
X(θ) -1.25 -12.179 -0.995 -1.55 -45 -35.46 -∞ 
That is, its region of absolute stability is within interval (-45, -∞). It is P-Stable. 
4.0 NUMERICAL EXPERIMENTS  

4.1 SAMPLED PROBLEMS 

y11 = - y 

 Y1(0) = 1, y(0) = 0 

Theoretical Solution  

 y(x) = Sin X 

For implementation of the developed method in solving the sampled problem, FORTRAN programs were developed 
at step size h = 0.1, 0.01 and 0.001 and computerized for steps k = 3. The performance of the method on the 
sampled problem was shown below in tabular and graphical forms. 
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PERFORMANCE OF PROPOSED METHOD ON SAMPLE PROBLEM  

Where Step k = 3  and  h = 0.1 

MESH SIZE 
(X) 

EXACT SOLUTION 
(ES) 

NUMERICAL RESULT 
(NR) 

ERROR 
(E) 

30 0.50006 0.50459 0.00453 

60 0.86609 0.86870 0.00260 

90 1.00000 0.99998 -0.00002 

120 0.86589 0.86326 -0.00263 

150 0.49971 0.49516 -0.00454 

180 -0.00041 -0.00564 -0.00524 

210 -0.50041 -0.50494 -0.00453 

240 -0.86630 -0.86890 -0.00260 

270 -1.00000 -0.99998 0.00002 

300 -0.86569 -0.86305 0.00264 

330 -0.49935 -0.49481 0.00455 

360 0.00081 0.00605 0.00524 

390 0.50076 0.50529 0.00452 

420 0.86650 0.86910 0.00260 

450 1.00000 0.99998 -0.00002 

480 0.86548 0.86284 -0.00264 

510 0.49900 0.49445 -0.00455 

540 -0.00122 -0.00646 -0.00524 

570 -0.50112 -0.50564 -0.00452 

600 -0.86670 -0.86930 -0.00260 
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TABLE 2B:  PERFORMANCE OF PROPOSED METHOD ON THE SAMPLE PROBLEM   

Where Step k = 3  and  h = 0.01 

MESH SIZE 
(X) 

EXACT SOLUTION 
(ES) 

NUMERICAL RESULT 
(NR) 

ERROR 
(E) 

30 0.50006 0.50051 0.00045 

60 0.86609 0.86635 0.00026 

90 1.00000 1.00000 0.00000 

120 0.86589 0.86563 -0.00026 

150 0.49971 0.49925 -0.00045 

180 -0.00041 -0.00093 -0.00052 

210 -0.50041 -0.50086 -0.00045 

240 -0.86630 -0.86656 -0.00026 

270 -1.00000 -1.00000 0.00000 

300 -0.86569 -0.86542 0.00026 

330 -0.49935 -0.49890 0.00045 

360 0.00081 0.00134 0.00052 

390 0.50076 0.50122 0.00045 

420 0.86650 0.86676 0.00026 

450 1.00000 1.00000 0.00000 

480 0.86548 0.86522 -0.00026 

510 0.49900 0.49855 -0.00045 

540 -0.00122 -0.00175 -0.00052 

570 -0.50112 -0.50157 -0.00045 

600 -0.86670 -0.86696 -0.00026 
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TABLE 2C:  PERFORMANCE OF PROPOSED METHOD ON THE SAMPLE PROBLEM  

Where Step k = 3  and  h = 0.001 

MESH SIZE 
(X) 

EXACT SOLUTION 
(ES) 

NUMERICAL RESULT 
(NR) 

ERROR 
(E) 

30 0.50006 0.50010 0.00005 

60 0.86609 0.86612 0.00003 

90 1.00000 1.00000 0.00000 

120 0.86589 0.86586 -0.00003 

150 0.49971 0.49966 -0.00005 

180 -0.00041 -0.00046 -0.00005 

210 -0.50041 -0.50046 -0.00005 

240 -0.86630 -0.86632 -0.00003 

270 -1.00000 -1.00000 0.00000 

300 -0.86569 -0.86566 0.00003 

330 -0.49935 -0.49931 0.00005 

360 0.00081 0.00087 0.00005 

390 0.50076 0.50081 0.00005 

420 0.86650 0.86653 0.00003 

450 1.00000 1.00000 0.00000 

480 0.86548 0.86546 -0.00003 

510 0.49900 0.49895 -0.00005 

540 -0.00122 -0.00127 -0.00005 

570 -0.50112 -0.50116 -0.00005 

600 -0.86670 -0.86673 -0.00003 
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FIGURE 2A: GRAPH SHOWING EXACT SOLUTION, NUMERICAL RESULT OF THE SAMPLE PROBLEM   
where k = 3  and h = 0.1 

 

FIGURE 2B: GRAPH SHOWING EXACT SOLUTION, NUMERICAL RESULT OF PROBLEM 1  
where k = 3  and h = 0.01 

 

FIGURE 2C: GRAPH SHOWING EXACT SOLUTION, NUMERICAL RESULT OF PROBLEM 1  
where k = 3  and h = 0.001 

 

1.5.0 CONCLUSION 
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In this work, numerical method for solution of periodic initial value problems of second order ordinary differential 
equation had been discussed. The developed method was analyzed and found to be consistent, convergent and 
stable. 
The performance of the method was implemented on some sampled problems of second order ordinary differential 
equation with oscillatory solutions. The results show that as the values of h decreases from 0.1 to 0.001, the 
truncation error approaches zero. It was also observed that as h decreases the graph of the numerical result (NR) 
and the exact solution (ES) of the proposed methods at each steps of k were nearly overlaps each other and the 
discretization error vanishes as h tend to zero, showing that the proposed method is accurate and can compare 
favourably with the result on table 2. 
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